
Proof to Fermat’s Conjecture
(Large Proposition by Fermat)

Norbert Südland∗†
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Abstract

A proof to Fermat’s conjecture (large proposition by Fermat) is given being proper for
school teaching, not only to be understood by specialists.

1 Problem

There is written about in a lexicon of the year 1953 [Lex1953]1:

”. . . Berühmt wurde die nach ihm ben. F. sche Vermutung (Großer F. scher Satz):
von F. ausgesprochene Behauptung, die bis heute allen allg. Beweisen der größten
Math. widerstanden hat, daß die Gleichung xn + yn = zn für n (natürl. Zahl) > 2
u. positiv ganzzahlige x, y, z nicht besteht. Ein Beweis für diese Behauptung konnte
bis heute nicht erbracht werden. Der ’wahrhaft wunderbare Beweis’, den F. zu besitzen
angab, ist nicht bekannt. Paul Wolfskehl (Darmstadt) stiftete 1908 100 000 M für
die erste vollkommene Lösung bis zum Jahr 2007.”

This passage reads translated into English:

”. . . Famous became Fermat’s conjecture (large proposition by Fermat) connected
to his name: Statement of Fermat, which resisted all general proofs of the greatest
mathematicians so far, that the equation xn + yn = zn with n (natural number)
> 2 and positive integers x, y, z is not valid. Until today evidence to this conjecture
has not yet been produced. The ’indeed wonderful proof ’, which Fermat claimed to
own, is not known of. In 1908 Paul Wolfskehl (Darmstadt, Germany) subscribed
100 000 marks for the first perfect solution until the year 2007.”

∗E–mail address: Norbert.Suedland@t–online.de
†Internet: http://www.Norbert–Suedland.info
1keyword ”Fermat”, page 293
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In 1993 Andrew Wiles [Enc1997]2 produced a large evidence (about 200 pages), too long to
be presented in a lecture. Now a short and obvious proof is seeked containing all solutions of
the equation, where just mathematical methods are used, that also might be known to Fermat
himself.

2 Solution by Simplification of the Problem

2.1 Motivation

The starting equation
xn + yn = zn (1)

seems to have a form being proper to present the problem only.

2.2 Aimed Transformation

It is presented alternatively to get a difference of two power terms:

xn = zn − yn. (2)

Then a division by yn takes place, where x > 0, y > 0, z > 0, and real n yields:(
x

y

)n

=

(
z

y

)n

− 1. (3)

The right hand side can be interpreted as a finite geometrical series.

2.3 Finite Geometrical Series

The finite geometrical series [BrS1987]3 yields with natural (i.e. positive integer) n:

qn − 1 = (q − 1)
n− 1∑
µ =0

qµ. (4)

The correctness of this relation is easy to calculate by use of a telescope sum:

(q − 1)
n− 1∑
µ = 0

qµ =
n− 1 + 1∑
µ = 0+1

qµ −
n− 1∑
µ =0

qµ = qn − 1. (5)

By multiplication by yn the finite geometrical series (4) yields because of q = z
y

a generalization
of the finite geometrical series:

zn − yn = (z − y)
n− 1∑
µ = 0

zµ yn−1−µ. (6)

2keyword ”Fermatsche Vermutung”
3section 2.3.2., page 114
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By this is shown that a factor (z − y) exists leading to a possible division of the equation (2)
by (z − y)n, because of the unequivocalness of prime factor separation of integer numbers, if
Fermat’s demand is valid. During the rest of the paper this factor is called b.

If such a solution is found, it is possible to produce a lot of infinity further solutions of the
same type, by multiplication of the solution type with a natural number powered n times.

2.4 First Substitution of the Problem

Thus the following substitution results, which transforms the equation of the three unknown
variables x, y, z into an equation with other three unknown variables x, y and b:

z − y = b (7)

with the solution:
z → y + b. (8)

There is no alternative to problem (2), that can be found by substitution of the original sum (1),
because the sum of two power terms cannot be simplified by use of the finite geometrical series.

The reduced equation—compared to equation (2)—

xn = (y + b)n − yn (9)

is the path to the general solution for x, y, b and n each being natural numbers.
A further connection is needed leading to a further substitution and thus the general solution.

2.5 Binomial Proposition

Fermat also worked together with Pascal [Lex1953]4, who elaborated the European form of the
binomial proposition. Here it is:

(a + b)n =
n∑

µ =0

(
n

µ

)
aµ bn−µ. (10)

The binomial coefficients
(

n
µ

)
used here, build up the Chinese triangle [Oli1995]5—in Europe also

known as Pascal’s triangle [Lex1953]6—and fit for the following difference equation:(
n + 1

µ + 1

)
=

(
n

µ

)
+

(
n

µ + 1

)
. (11)

Pascal was able to calculate each binomial coefficient directly by use of the factorial n! =
∏n

µ = 1 µ
with n being a non–negative integer number:(

n

µ

)
=

n!

µ! (n− µ)!
. (12)

An empty product yields unity, thus the binomial coefficients are known and unequivocal for all
arguments (needed here).

4keyword ”Pascal”, page 754
5section ”War Pascal Chinese?”, page 102–105
6keyword ”Pascalsches (arithmetisches) Dreieck”, i.e. ”Pascal’s (arithmetic) triangle, page 754
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2.6 Transformation by the Binomial Proposition

Now the remaining problem (9) can unequivocally be simplified by the binomial proposition for
all positive integer n in the following way:

xn =
n− 1∑
µ = 0

(
n

µ

)
yµ bn−µ . (13)

The writing of sums according to Leibniz (1646–1716) [Lex1953]7 came up later than Fermat
(1601–1665) [Lex1953]8, but it is very useful to avoid the less clear style using dots, when pro-
ducing an obvious evidence.

2.7 Second Substitution of the Problem

The problem yet to be solved (13) for positive integer n is also gotten when the nth ordered root
of the integer sum is called x: This integer number x indeed is seeked for.

The binomial proposition including the binomial coefficients is very unequivocal and a forcing
form to get an nth ordered root without integer rest: The solution found must fulfil the binomial
proposition anyway!

The nth ordered power term of an integer value must be added to the sum, thus the whole
equation (9,13) can be added to −xn:

0 = −xn − yn + (y + b)n. (14)

A coefficient list based on the binomial proposition also in this form yields the connection

−xn − yn = 0 (15)

to get a single power term of order n:
yn = −xn. (16)

This determinative equation (16) also can be gotten directly from equation (13). Other possibil-
ities are not included within the binomial proposition, there is just a possibility of special cases,
which can be found before application of the second determinative equation (16).

2.8 General Solution Triple

The second determinative equation (16) can be divided by xn to get n different roots of −1:

y

x
= n

√
−1 . (17)

Because of i = ±
√
−1 , these roots are not real for n being an even number.

7keyword ”Leibniz”, page 586
8keyword ”Fermat”, page 293
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For all n 6= 0 there is the solution possibility y → 0 not being valid, because zero is not a
natural number.

For odd n there is an additional solution possibility y → −x leading to z = y + b = 0.
Thus there are three numbers in each case which solve the starting problem (after resubsti-

tution):

• xn + yn = zn with integer x, y → 0, z → x and integer n 6= 0;

• xn + yn = zn with integer x, y → 0, z → −x and even n 6= 0;

• xn + yn = zn with integer x, y → −x, z → 0 and odd n.

All these solutions are not valid because of the demand that x, y and z are positive integer
numbers. In each case the solutions can be multiplied by nth power of an integer number, i.e. by
wn, thus leading to a lot of infinity different solution triples (of the same type) for each integer
n and x.

Also here, number zero is an even number with 00 = 1 thus for n → 0 no solution is found.
The solution has been found with most generality, thus further solutions of the problem can

be found before both substitutions only. This must be looked at in detail depending on the
parameter n.

2.9 Further Solution Triples for n → 1

For n → 1 results that the sum of two natural numbers is a natural number, too:

x + y = z. (18)

This case already is valid at the beginning of the problem, thus excluded by Fermat explicitly.

2.10 Further Solution Triples for n → 2

With n → 2 after the first substitution (13) results the following view:

x2 = 2 y b + b2 . (19)

On the right hand side for b rightarrow1 there is an odd number. Odd square numbers exist,
namely the squares of all odd numbers.

Thus an algebraic solution of y is found for positive odd integers x:{
x , y → x2 − b2

2 b
, z → x2 + b2

2 b

}
=

{
x , y → x2

2 b
− b

2
, z → x2

2 b
+

b

2

}
. (20)

Here, it is also remarkable that the first solution triple for x → b has got a zero number term.
Solution examples:

• b = 1: 52 − 42 = 32, 132 − 122 = 52, 252 − 242 = 72, 412 − 402 = 92, 612 − 602 = 112, etc.

• b = 2: 52 − 32 = 42, 102 − 82 = 62, 172 − 152 = 82, 262 − 242 = 102, 372 − 352 = 122, etc.

For b > 1 there are irreducible cases, thus b = 1 is not the case in general.
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Irreducible solution examples (for some b all cases are reducible) are:

• b = 1: 52 − 42 = 32, 132 − 122 = 52, 252 − 242 = 72, 412 − 402 = 92, 612 − 602 = 112, etc.

• b = 2: 172 − 152 = 82, 372 − 352 = 122, 652 − 632 = 162, 1012 − 992 = 202, etc.

• b = 8: 292 − 212 = 202, 532 − 452 = 282, 852 − 772 = 362, 1252 − 1172 = 442, etc.

• b = 9: 652 − 562 = 332, 892 − 802 = 392, 1492 − 1402 = 512, 1852 − 1762 = 572, etc.

The irreducible solution examples mostly occur, if b is the square of a b, which already yielded
irreducible cases. This is directly elucident, if the multiplicator b = z − y of the finite geometric
series (6) is looked at, which shall lead for n = 2 to a square number.

Thus further cases are resulting, which can be overseen easily during the proof, if e.g. b = 1
is set. The cases shown here may be enough to clarify, that in general b cannot be reduced to
one single number .

Each solution type can be multiplied by a square number to get the complete solution of the
problem. The case n → 2 has been excluded by Fermat, too.

For n = 2 can be concluded, that the seek for Pythagorean twins turns out to be as interesting
and unexpected as the seek for prime numbers.

2.11 Undecidable Problem?

For n > 2 the right hand side of equation (13) consists of at least three terms. Therefore here
for producing a power term the binomial proposition must be used.

A remarkable unclearness results concerning this argumentation, thus by the supposition that
Fermat’s proposition would be wrong, the following substitution seems to be helpful:

xn → zn − yn (21)

In fact this is a resubstitution, the solution of which clearly leads to z = y + b without having
proven anything by this. Therefore it is obviously not possible to prove Fermat’s proposition by
a contradiction proof, but the following circumstance results:

• If the proposition is valid, then the system is consistent.

• If the proposition is invalid, then the system is also consistent.

Here, the opinion that the supposition of the opposite would lead forcingly into a contradiction,
is very obviously erroneous, because for n = 2 Fermat’s proposition is quite wrong. This solution
manifold however is also contained within the algebraic formulation (21). The opinion by Gödel
to declare the problem to be undecidable9, therefore can be rejected: A blurred formulation does
not tell anything, also not on the decidability itself.

On Fermat’s proposition actually only the question is dealed with, at what point the binomial
proposition must be used for integer numbers to complete an incomplete binomial sum. This is
the case for integer n > 2.

9[Göd1931], footnote 61, page 196

6



2.12 Summary

For this, the proposition by Fermat holds:

”There are no natural (positive integer) numbers x, y, z, n with n > 2,
that fulfil the equation: xn + yn = zn.”

This needed to be shown. (quod erat demonstrandum)

2.13 Outlook

For interested persons is mentioned, that the following cubic triplets exist:

33 + 43 + 53 = 63. (22)

An analogous proof to the evidence of Fermat’s proposition takes place after a threefold substi-
tution of an equation, containing four variables and a power order n. Someone might be less well
aquainted with the theorems handling threefold sums.

3 Discussion of Evidence

3.1 Motivation

The evidence given is alarming simple and comparatively concise. Doubts about completeness, es-
pecially in consideration to solutions forgotten eventually, are not removable entire unequivocally
to each spectator. For this, some further points of view shall be mentioned.

3.2 Further Solution Triples with n > 2 ?

3.2.1 How to do

The seek for further special cases, like the ones already found before the determinative equation
(16) with n → 2, keeps being famous. For this, now the algebraic orders are dealed with, that
can be solved by the Cardanic formulae, yet:

3.2.2 Solution with n → 3 and b → 1:

The most simple case n → 3 and b → 1 yields:

x3 = 3 y2 + 3 y + 1. (23)

The cubic root of the integer term on the right hand side might be named x. With integer y this
problem leads to the insight y3 = −x3 already dealed with.

7



To deal analogously to the case n → 2, the following solutions for y are found now:

y → −1

2
± 1

6

√
12 x3 − 3 . (24)

With x → 1 only, a square number is gotten as root term, leading to y → −1 and y → 0. Both
possibilities already have been discussed.

3.2.3 Solution with n → 4 and b → 1:

The case n → 4 and b → 1 yields:

x4 = 4 y3 + 6 y2 + 4 y + 1. (25)

The solution with root =
3
√

27 x4 + 3
√

81 x8 + 3 is:

y1 → 1

6

(
−3− 3

root
+ root

)
, (26)

y2,3 → 1

6

−3 +
3
(
1± i

√
3
)

2 root
−

(
1∓ i

√
3
)

root

2

 . (27)

A rational solution triple exists for x → 0 with root →
√

3 :

y → −1

2
, y → −1

2
± i

2
. (28)

This special solution can be multiplied by 24 = 16, thus being an integer solution. The result is
not new:

24

(
04 +

(
−1

2

)4
)

= 24
(

1

2

)4

. (29)

An integer number solution is found at the well–known position with x → ±1, where results

root → 3
√

27 + 6
√

21 , leading to y → 0.
The theorems to simplify cubic roots are completed so weakly, that the solution must be

found by use of numerical methods. The correct solution fulfils the following quadratic equation
(26) in root anyway, and can be checked by this:

0 =
1

6

(
−3− 3

root
+ root

)
. (30)

The solution of this quadratic equation yields the identity:

root =
3
√

27 + 6
√

21 =
3 +

√
21

2
. (31)

The completeness of results already mentioned for even n stays valid.
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3.2.4 Solution with n → 5 and b → 1:

With n → 5 and b → 1results:

x5 = 5 y4 + 10 y3 + 10 y2 + 5 y + 1. (32)

The reduced polynomial in y → u− 1
2

is biquadratic only:

x5 = 5 u4 +
5

2
u2 +

1

16
. (33)

The four solutions of equation (31) in y are:

y → −1

2
±

√
−5± 2

√
20 x5 + 5

2
√

5
. (34)

Here, just square roots occur in the result, stressing that x → 1 entirely sure is the only integer
solution:

y1 = 0 y2 = −1 y3,4 = −1

2
± i

√
3

2
. (35)

These results are not new, but stress to critics the completeness of the given evidence.

3.3 Can Impossibility be Proven by Mathematics?

The proof of impossibility given by Fermat mainly consists in the evidence of a zero number,
thus not three, but two numbers only would really be seeked for. Fermat correctly decided to
avoid this ambiguousity, by the precondition to seek for natural (positive integer) numbers only.

If really three numbers are seeked for, there exist solutions, but at least as irrational numbers.
Handling evidence of impossibility always needs special care, because much too probable the

one or other case might be overseen.
Algebraic equations of nth order contain maximally n different solutions. This property can

e.g. be used to give the n different roots of unity concretely.
The nth roots of unity are exp

(
2 i π µ

n

)
with µ ∈ {0, 1, 2, 3, . . . , n}. There are always n roots

(of order n) of unity. With this, the fundamental proposition of algebra can be proven, showing,
that because of the transformation type

yn = −
n− 1∑
µ = 0

a(µ) yµ, (36)

a normalized polynomial of degree n can result just n roots of a single complex number only,
also for any complex kind of polynomial coefficients a(µ). To solve an algebraic equation means
to be able to combine lower ordered roots to an unequivocal complex number term in each case
(of order).
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The fundamental proposition of algebra also can be given in the form:

”It is impossible to get more than n roots from a polynomial of degree n.”

In reality this proposition proofs the existence of n complex roots, that at least partially might
be the same.

As a consequence of this consideration can be formulated, that impossibility should be dis-
cussed as proven only, where the properties of solution method or solution itself are known so
much, that they do not fit to the given method or solution range (e.g.: natural numbers).

Evidence of impossibility never should be understood in a way, that a surprisingly occuring
possibility of solution is fighted against. Such occurences rather contribute to a healthy shock of
whole thinking systems to free them from fallacies.

This treatise shall help to grade a long missed evidence anyway to be easy. The author (not
the most intelligent) needed twelve years to get a breakthrough to this amazing simple proof,
and almost further six years to understand the result.

3.4 Tips on Producing Evidence

If subgroups of complex numbers are mentioned in a proposition explicitly, the following connec-
tions are helpful with a trial of proof:

• Algebraic transformation mostly is valid with complex terms.

• Only rational power orders so far yield several roots (according to the denominator of the
canceled fraction of power order), for real power orders p there are − [−|p|]10 roots.

• Prime factor separation is unequivocal to real integer numbers only.11

• A lot of mathematical proposition and transformations are valid for subgroups of the com-
plex numbers only.

• Real integer numbers are either even or odd, irrational real numbers like
√

2 are neither
nor.
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A Unequivocalness of Euler’s Gamma Function

The terms of Euler’s Gamma function Γ(n) interpolate the factorial formula n! = Γ(n + 1) and
fit for the following difference equation:

Γ (n + 1) = n Γ (n) . (37)

Because of the reflection formula (being valid for all complex valued z)

Γ (z) Γ (1− z) =
π

sin (π z)
, (38)

Euler’s Gamma function fulfils the scanning theorem [Mar1986]12:

”The minimal periode of the interpolating function is greater than or equal to the
double distance of equidistant data points,”

thus a main solution [Mes1959]13 of the difference equation (37) is found—here the distance
number one between integer numbers is used:

π

sin (π z)
=

π

sin (π (z ± 2))
. (39)

The minimal periode of this product indeed is number two.
By this, the Γ (z) function cannot own a periode less than number two, thus interpolating

the factorial formula z! = Γ (z + 1) with best fit for all complex z.
Thus equation (11) is also valid for any complex n and µ.
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